Synergistic Interactions between Alzheimer’s Aβ40 and Aβ42 on the Surface of Primary Neurons Revealed by Single Molecule Microscopy
نویسندگان
چکیده
Two amyloid-β peptides (Aβ40 and Aβ42) feature prominently in the extracellular brain deposits associated with Alzheimer's disease. While Aβ40 is the prevalent form in the cerebrospinal fluid, the fraction of Aβ42 increases in the amyloid deposits over the course of disease development. The low in vivo concentration (pM-nM) and metastable nature of Aβ oligomers have made identification of their size, composition, cellular binding sites and mechanism of action challenging and elusive. Furthermore, recent studies have suggested that synergistic effects between Aβ40 and Aβ42 alter both the formation and stability of various peptide oligomers as well as their cytotoxicity. These studies often utilized Aβ oligomers that were prepared in solution and at μM peptide concentrations. The current work was performed using physiological Aβ concentrations and single-molecule microscopy to follow peptide binding and association on primary cultured neurons. When the cells were exposed to a 1:1 mixture of nM Aβ40:Aβ42, significantly larger membrane-bound oligomers developed compared to those formed from either peptide alone. Fluorescence resonance energy transfer experiments at the single molecule level reveal that these larger oligomers contained both Aβ40 and Aβ42, but that the growth of these oligomers was predominantly by addition of Aβ42. Both pure peptides form very few oligomers larger than dimers, but either membrane bound Aβ40/42 complex, or Aβ40, bind Aβ42 to form increasingly larger oligomers. These findings may explain how Aβ42-dominant oligomers, suspected of being more cytotoxic, develop on the neuronal membrane under physiological conditions.
منابع مشابه
Single-molecule imaging reveals aβ42:aβ40 ratio-dependent oligomer growth on neuronal processes.
Soluble oligomers of the amyloid-β peptide have been implicated as proximal neurotoxins in Alzheimer's disease. However, the identity of the neurotoxic aggregate(s) and the mechanisms by which these species induce neuronal dysfunction remain uncertain. Physiologically relevant experimentation is hindered by the low endogenous concentrations of the peptide, the metastability of Aβ oligomers, and...
متن کاملMechanism of amyloid β−protein dimerization determined using single−molecule AFM force spectroscopy
Aβ42 and Aβ40 are the two primary alloforms of human amyloid β-protein (Aβ). The two additional C-terminal residues of Aβ42 result in elevated neurotoxicity compared with Aβ40, but the molecular mechanism underlying this effect remains unclear. Here, we used single-molecule force microscopy to characterize interpeptide interactions for Aβ42 and Aβ40 and corresponding mutants. We discovered a dr...
متن کاملAberrant Co-localization of Synaptic Proteins Promoted by Alzheimer’s Disease Amyloid-β Peptides: Protective Effect of Human Serum Albumin
Amyloid-β (Aβ), Aβ40, Aβ42, and, recently, Aβ25-35 have been directly implicated in the pathogenesis of Alzheimer's disease. We have studied the effects of Aβ on neuronal death, reactive oxygen species (ROS) production, and synaptic assembling in neurons in primary culture. Aβ25-35, Aβ40, and Aβ42 significantly decreased neuronal viability, although Aβ25-35 showed a higher effect. Aβ25-35 showe...
متن کاملNew Structural View on How Amyloid Beta Production Hints Alzheimer’s Disease Pathology
The accumulation of amyloid beta (Aβ) peptide faulty isoform has been found to cause Alzheimer’s disease (AD) as it is the major component of amyloid senile plaques in the extracellular matrix of brains of AD patients. Aβ42 (only two amino acid longer than Aβ40) tends to aggregate, forming neurotoxic oligomers and fibrils. A lot of studies were focused on Aβ42, but all failed explain why the pr...
متن کاملCross-seeding effects of amyloid β-protein and α-synuclein.
Amyloid β-protein (Aβ) and α-synuclein (αS) are the primary components of amyloid plaques and Lewy bodies (LBs), respectively. Previous in vitro and in vivo studies have suggested that interactions between Aβ and αS are involved in the pathogenesis of Alzheimer's disease and LB diseases. However, the seeding effects of their aggregates on their aggregation pathways are not completely clear. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013